SPR配体垂钓原理
基于SPR的配体垂钓技术,基本原理是从中药煎剂、中草药提取物或化合物库等复杂混合物中“钓取”可以与配体结合的分子。
实验时:先将靶蛋白偶联在芯片上,然后将中药煎剂、中草药提取物或化合物库等复杂样品进样分析,垂钓出混合样品中与靶蛋白结合的分子,最后利用质谱对回收到的样品进行鉴定。
以蛋白钓取化合物为例,主要过程如下:
1. 靶蛋白偶联:将bait蛋白(靶蛋白)偶联到芯片上。
2. 垂钓回收:将中药煎剂、中草药提取物或化合物库等复杂混合分析物的进行垂钓回收。
3. 质谱检测:利用质谱技术对比实验组和对照组的成分差异,鉴定出潜在能与靶点结合的候选化合物。
注:对照组实验是在未偶联配体空白芯片上进行Inject and recover,将中药煎剂、中草药提取物或化合物库等复杂混合分析物进行垂钓回收后做质谱检测。
SPR配体垂钓及活性成分验证流程图
图1 中草药活性成分的发现及靶点验证
2020年海军军医大学团队在Analytical Chemistry期刊上发表题为Surface Plasmon Resonance-Based Membrane Protein-Targeted Active Ingredients Recognition Strategy: Construction and Implementation in Ligand Screening from Herbal Medicines的研究文章。
研究人员基于SPR配体垂钓技术,将携带膜蛋白CXCR4的慢病毒颗粒固定在CM5芯片上,对川芎、穿心莲、苦楝子的草药提取物进行SPR分子垂钓,垂钓回收产物利用UPLC−QTOF-MS技术鉴定,鉴定到来源于川芎的洋川芎内酯I,并且通过后续实验证明蛋白与小分子配体间的相互作用。
1.构建差异携带CXCR4蛋白的慢病毒颗粒
本研究通过shRNA降低293T细胞的CXCR4蛋白的表达,与对照组(空白载体)一起生产纯化高表达/低表达CXCR4蛋白的慢病毒颗粒。并通过western-blot和流式荧光对表达结果进行检测(图1)。
图3 western-blot和流式荧光检测慢病毒颗粒是否携带CXCR4蛋白
2.CXCR4蛋白活性鉴定以及SPR垂钓方法可行性验证
本研究首先筛选了将慢病毒颗粒固定在CM5芯片上的最佳条件(缓冲液pH4.0、4.5、5.0、5.5,VLP浓度200、300、400、500 μg/ml)。在最适条件(pH4.0,VLP浓度500 μg/ml)下将慢病毒颗粒固定到CM5芯片上后,使用20 ug/ml CXCR4、P38、STAT3蛋白抗体分别进行SPR实验,实验结果表明CXCR4蛋白具有良好的活性以及特异性。同时本研究使用CXCR4蛋白的小分子拮抗剂AMD3100(普乐沙福,浓度7.8125-250 nM),以30 ul/min的速度流经芯片,进行SPR亲和力测定实验,实验表明CXCR4蛋白与AMD3100具有很好的亲和力(KD=35.72 nM),同时也验证了基于SPR技术分子垂钓的可行性(图2)。
3.基于SPR配体垂钓技术和UPLC−QTOF-MS鉴定中草药活性小分子配体
本研究对川芎、穿心莲、苦楝子的草药提取物进行SPR垂钓(草药提取物进样速度5 ul/min,持续180s),将回收的活性小分子进行质谱鉴定,发现来源于川芎的洋川芎内酯I在实验组中存在明显富集(图3)。
4. 洋川芎内酯I和CXCR4蛋白相互作用验证
本研究将鉴定到的洋川芎内酯I(浓度1-64 um)与CXCR4蛋白进行SPR相互作用验证,二者具有良好的亲和力,KD=2.94 ± 0.36 μM。同时对CXCR4和洋川芎内酯I进行分子对接,分子对接显示,洋川芎内酯I与CXCR4蛋白的Val(112)、Cys(186)可能形成氢键(图4)。两个实验证明,洋川芎内酯I能与CXCR4结合,是CXCR4蛋白潜在的拮抗剂。
5.洋川芎内酯I抑制MCF-7癌细胞迁移
据报道CXCR4通过SDF-1/CXCR4参与细胞迁移过程,CXCR4拮抗剂可能通过阻断SDF-1/CXCR4信号途径来抑制癌细胞的迁移过程。本研究通过Boyden小室实验(Boyden chamber assays),证明洋川芎内酯I与CXCR4蛋白结合,能有效抑制MCF-7细胞的迁移(图5)。
图7 洋川芎内酯I能有效抑制MCF-7癌细胞的迁移
Preparation of sample extracts:The crude drugs were smashed into powders and then sieved through a 40-mesh sieve. Powder samples in 1 g were extracted by supersonic extraction with 10 mL ethanol: H2O (80: 20) for 30 mins. Subsequently, the extracts were centrifuged and filtered through a 0.22-μm filter. The samples were stored at room temperature.
LVPs immobilization condition scouting:SPR assays were performed on Biacore T200 system (GE Healthcare, Sweden). The physical absorption response signal of LVPs on CM5 chips with four different pH buffers (4.0, 4.5, 5.0, and 5.5) was tested to find the optimal buffer. Then the physical absorption response signal of LVPs on CM5 chips at four different concentrations (200, 300, 400 and 500 μg/mL, use total protein concentration of LVPs as reference) was detected to find the optimal concentration of LVPs. Then LVPs were diluted in10mM sodium acetate at the optimal condition (pH = 4.0, 500 μg/mL) and then immobilized on detection cells by applying EDC/NHS cross-linking reaction. For affinity detection module, flow cell (FC) 1 was immobilized with LVPs with low CXCR4 expression (CXCR4- -LVPs) and FC2 was immobilized with LVPs with high CXCR4 expression (CXCR4+ -LVPs). For ligand screening module, all the four FCs on activity chip were immobilized with CXCR4+ -LVPs and all the four FCs on reference chip were immobilized with CXCR4- -LVPs
Recovery of CXCR4-bound ingredients:Herbal extract was injected over the sensor surface for 180 s at 5 μL/min. Phosphate buffer saline (PBS) with 5% DMSO was selected as running buffer. The flow system was washed with 0.5% formic acid. A small volume of 2 μL sample was injected into the flow cells and incubated for 20 s. Then, the flow direction over the sensor surface was reversed and the sample containing CXCR4-bound ingredients was deposited in 10 μL ammonium bicarbonate (50 mM). In a cycle, the recovery procedure was replicated for 5 times.